The mobile proton in polyalanine peptides.

نویسندگان

  • Motoya Kohtani
  • Jean E Schneider
  • Thaddeus C Jones
  • Martin F Jarrold
چکیده

Ion mobility measurements have been performed for protonated polyalanine peptides (A10 + H+, A15 + H+, A20 + H+, A25 + H+, and A15NH2 + H+) as a function of temperature using a new high-temperature drift tube. Peaks due to helices and globules were found at room temperature for all peptides, except for A10 + H+ (where only the globule is present). As the temperature is increased, the helix and globule peaks broaden and merge to give a single narrow peak. This indicates that the two conformations interconvert rapidly at elevated temperatures. The positions of the merged peaks show that A15 + H+ and A15NH2 + H+ spend most of their time as globules when heated, while A20 + H+ and A25 + H+ spend most of their time as helices. The helix/globule transitions are almost certainly accompanied by intramolecular proton transfer, and so, these results suggest that the proton becomes mobile (able to migrate freely along the backbone) at around 450 K. The peptides dissociate as the temperature is increased further to give predominantly the bn(+), b(n-1)(+), b(n-2)(+), ... series of fragment ions. There is a correlation between the ease of fragmentation and the time spent in the helical conformation for the An + H+ peptides. Helix formation promotes dissociation because it pools the proton at the C-terminus where it is required for dissociation to give the observed products. In addition to the helix and globule, an antiparallel helical dimer is observed for the larger peptides. The dimer can be collisionally dissociated by injection into the drift tube at elevated kinetic energies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling nonaqueous proton wires built from helical peptides: biased proton transfer driven by helical dipoles.

We report gas-phase electronic structure calculations on helical peptides that act as scaffolds for imidazole-based hydrogen-bonding networks (proton wires). We have modeled various 21-residue polyalanine peptides substituted at regular intervals with histidines (imidazole-bearing amino acids), using a hybrid approach with a semiempirical method (AM1) for peptide scaffolds and density functiona...

متن کامل

Determination of the gas-phase acidities of cysteine-polyalanine peptides using the extended kinetic method.

We determined the gas-phase acidities of two cysteine-polyalanine peptides, HSCA3 and HSCA4, using a triple-quadrupole mass spectrometer through application of the extended kinetic method with full entropy analysis. Five halogenated carboxylic acids were used as the reference acids. The negatively charged proton-bound dimers of the deprotonated peptides with the conjugate bases of the reference...

متن کامل

Statistical characterization of the charge state and residue dependence of low-energy CID peptide dissociation patterns.

Data mining was performed on 28 330 unique peptide tandem mass spectra for which sequences were assigned with high confidence. By dividing the spectra into different sets based on structural features and charge states of the corresponding peptides, chemical interactions involved in promoting specific cleavage patterns in gas-phase peptides were characterized. Pairwise fragmentation maps describ...

متن کامل

Aggregation of polyalanine in a hydrophobic environment.

The dimerization of polyalanine peptides in a hydrophobic environment was explored using replica exchange molecular dynamics simulations. A nonpolar solvent (cyclohexane) was used to mimic, among other hydrophobic environments, the hydrophobic interior of a membrane in which the peptides are fully embedded. Our simulations reveal that while the polyalanine monomer preferentially adopts a beta-h...

متن کامل

Monte Carlo studies of folding, dynamics, and stability in alpha-helices.

Folding simulations of polyalanine peptides were carried out using an off-lattice Monte Carlo simulation technique. The peptide was represented as a chain of residues, each of which contains two interaction sites: one corresponding to the C(alpha) atom and the other to the side chain. A statistical potential was used to describe the interaction between these sites. The preferred conformations o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 126 51  شماره 

صفحات  -

تاریخ انتشار 2004